Cleavage of DFF-45/ICAD by multiple caspases is essential for its function during apoptosis.

نویسندگان

  • D Tang
  • V J Kidd
چکیده

Apoptosis involves the proteolysis of specific cellular proteins by a group of cysteine proteases known as caspases. Many of these cellular targets are either functionally inactivated (e.g. poly(ADP-ribose) polymerase) or activated (e.g. other caspases, gelsolin) by such processing, thereby facilitating the cell death process. Caspase 3 is involved in the processing of many of these proteins. Recently, however, it was reported that caspase 3 is dispensable for the cleavage of a large number of cellular caspase substrates during apoptosis. Among these substrates is DFF-45/ICAD, a subunit of the heterodimeric DNA fragmentation factor (DFF), otherwise known as caspase-activated DNase (CAD), that mediates genomic DNA degradation during apoptosis. Conversely, others have reported that caspase 3 is essential for the cleavage and activation of DFF-45/ICAD. To resolve this controversy we examined DFF-45/ICAD processing during apoptosis in MCF-7 breast carcinoma cells that lack functional caspase 3 and in MCF-7 cells expressing caspase 3. We found that DFF-45/ICAD is cleaved by two distinct caspases, one of which is caspase 3. Furthermore, cleavage of the carboxyl-terminal region of DFF-45/ICAD, which is necessary for activation of the enzyme, requires functional caspase 3. In the absence of caspase 3 cleavage of the amino-terminal region of DFF-45/ICAD by another caspase occurs, but the DFF-45 enzyme remains inactive.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lack of internucleosomal DNA fragmentation is related to Cl(-) efflux impairment in hematopoietic cell apoptosis.

The heterodimeric DNA fragmentation factor (DFF) is responsible for DNA degradation into nucleosomal units during apoptosis. This process needs the caspase-dependent release of ICAD/DFF-45, the inhibitory subunit of DFF. Here we report that triggering apoptosis via a hyperosmotic shock in hematopoietic cells causes the appearance of mitochondrial and cytosolic alterations, activation of caspase...

متن کامل

Growth phase-dependent expression of ICAD-L/DFF45 modulates the pattern of apoptosis in human colonic cancer cells.

The inhibitor of caspase-3-activated DNase (ICAD) is a caspase-3 substrate that controls nuclear apoptosis. ICAD has two isoforms: a functional isoform of M(r) 45,000, ICAD-L/DNA fragmentation factor (DFF) 45; and a M(r) 35,000 isoform, ICAD-S/DFF35. ICAD-deficient murine cells display resistance to apoptotic stimuli and absence of typical nuclear changes of apoptosis. Our aim was to: (a) chara...

متن کامل

Identification of regulatory and catalytic domains in the apoptosis nuclease DFF40/CAD.

The DNA fragmentation factor (DFF) is composed of two subunits, the 40-kDa caspase-3-activated nuclease (DFF40/CAD) and its 45-kDa inhibitor (DFF45/ICAD). During apoptosis, DFF-40/CAD is activated by caspase-3-mediated cleavage of DFF45/ICAD. Mutational analysis of DFF40/CAD revealed that DFF40/CAD is composed of a C-terminal catalytic domain and an N-terminal regulatory domain. Deletion of the...

متن کامل

Biol. Pharm. Bull. 29(4) 648—654 (2006)

morphological and biochemical changes such as cell shrinkage, membrane blebbing, phosphatidylserine (PS) externalization, the potential loss of the mitochondrial membrane, poly (ADP-ribose) polymerase (PARP) cleavage, chromatin condensation and genomic DNA fragmentation. External stimulation may induce apoptosis as well as necrosis. These two types of cell death can be distinguished from each o...

متن کامل

Apoptotic nuclear morphological change without DNA fragmentation

Apoptosis is characterized morphologically by condensation and fragmentation of nuclei and cells and biochemically by fragmentation of chromosomal DNA into nucleosomal units [1]. CAD, also known as CPAN or DFF-40, is a DNase that can be activated by caspases [2] [3] [4] [5] [6]. CAD is complexed with its inhibitor, ICAD, in growing, non-apoptotic cells [2] [7]. Caspases that are activated by ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 273 44  شماره 

صفحات  -

تاریخ انتشار 1998